ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. II. Bafilomycin-sensitive H+ secretion.

نویسندگان

  • Masayoshi Nanami
  • Vladimir Pech
  • Yoskaly Lazo-Fernandez
  • Alan M Weinstein
  • Susan M Wall
چکیده

Epithelial Na(+) channel (ENaC) blockade stimulates stilbene-sensitive conductive Cl(-) secretion in the mouse cortical collecting duct (CCD). This study's purpose was to determine the co-ion that accompanies benzamil- and DIDS-sensitive Cl(-) flux. Thus transepithelial voltage, VT, as well as total CO2 (tCO2) and Cl(-) flux were measured in CCDs from aldosterone-treated mice consuming a NaCl-replete diet. We reasoned that if stilbene inhibitors (DIDS) reduce conductive anion secretion they should reduce the lumen-negative VT. However, during ENaC blockade (benzamil, 3 μM), DIDS (100 μM) application to the perfusate reduced net H(+) secretion, which increased the lumen-negative VT. Conversely, ENaC blockade alone stimulated H(+) secretion, which reduced the lumen-negative VT. Application of an ENaC inhibitor to the perfusate reduced the lumen-negative VT, increased intercalated cell intracellular pH, and reduced net tCO2 secretion. However, benzamil did not change tCO2 flux during apical H(+)-ATPase blockade (bafilomycin, 5 nM). The increment in H(+) secretion observed with benzamil application contributes to the fall in VT observed with application of this diuretic. As such, ENaC blockade reduces the lumen-negative VT by inhibiting conductive Na(+) absorption and by stimulating H(+) secretion by type A intercalated cells. In conclusion, 1) in CCDs from aldosterone-treated mice, benzamil application stimulates HCl secretion mediated by the apical H(+)-ATPase and a yet to be identified conductive Cl(-) transport pathway; 2) benzamil-induced HCl secretion is reversed with the application of stilbene inhibitors or H(+)-ATPase inhibitors to the perfusate; and 3) benzamil reduces VT not only by inhibiting conductive Na(+) absorption, but also by stimulating H(+) secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. I. Stilbene-sensitive Cl- secretion.

Inhibition of the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption in cortical collecting ducts (CCDs) from aldosterone-treated rats and mice. Since ENaC does not transport Cl(-), the purpose of the present study was to explore how ENaC modulates Cl(-) absorption in mouse CCDs perfused in vitro. Therefore, we measured transepithelial Cl(-) flux and transepithelial voltage in CCDs perfus...

متن کامل

ENaC inhibition stimulates Cl- secretion in the mouse cortical collecting duct through an NKCC1-dependent mechanism.

In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no ...

متن کامل

Novel Schering and ouabain-insensitive potassium-dependent proton secretion in the mouse cortical collecting duct.

The intercalated (IC) cells of the cortical collecting duct (CCD) are important to acid-base homeostasis by secreting acid and reabsorbing bicarbonate. Acid secretion is mediated predominantly by apical membrane Schering (SCH-28080)-sensitive H(+)-K(+)- ATPase (HKA) and bafilomycin-sensitive H(+)-ATPase. The SCH-28080-sensitive HKA is believed to be the gastric HKA (HKAg). Here we examined apic...

متن کامل

Nitric oxide reduces Cl⁻ absorption in the mouse cortical collecting duct through an ENaC-dependent mechanism.

Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na⁺ and Cl⁻ in the kidney, we asked whether NO regulates net Cl⁻ flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl⁻ absorption. Cl⁻ absorption was measured in CCDs perfused in vitro that were taken from aldosterone-trea...

متن کامل

Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney.

We examined the effect of angiotensin II (ANG II) on epithelial Na(+) channel (ENaC) in the rat cortical collecting duct (CCD) with single-channel and the perforated whole cell patch-clamp recording. Application of 50 nM ANG II increased ENaC activity, defined by NP(o) (a product of channel numbers and open probability), and the amiloride-sensitive whole cell Na currents by twofold. The stimula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 309 3  شماره 

صفحات  -

تاریخ انتشار 2015